认真是我们
参与这个社会的方式

机器学习算法分类

监督学习

  • 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
  • 回归 线性回归、岭回归
  • 标注 隐马尔可夫模型

无监督学习

  • 聚类 k-means

监督学习

监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。

分类

概念:分类是监督学习的一个核心问题,在监督学习中,当输出变量取有限个离散值时,预测问题变成为分类问题。最基础的便是二分类问题,即判断是非,从两个类别中选择一个作为预测结果

回归

概念:回归是监督学习的另一个重要问题。回归用于预测输入变量和输出变量之间的关系,输出是连续型的值。

无监督学习

无监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值所组成。

 

没有故事 也没有酒

点也没用点也没用